23^2+19^2=x^2

Simple and best practice solution for 23^2+19^2=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23^2+19^2=x^2 equation:



23^2+19^2=x^2
We move all terms to the left:
23^2+19^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+890=0
a = -1; b = 0; c = +890;
Δ = b2-4ac
Δ = 02-4·(-1)·890
Δ = 3560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3560}=\sqrt{4*890}=\sqrt{4}*\sqrt{890}=2\sqrt{890}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{890}}{2*-1}=\frac{0-2\sqrt{890}}{-2} =-\frac{2\sqrt{890}}{-2} =-\frac{\sqrt{890}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{890}}{2*-1}=\frac{0+2\sqrt{890}}{-2} =\frac{2\sqrt{890}}{-2} =\frac{\sqrt{890}}{-1} $

See similar equations:

| a^2+24^2=25^2 | | 32=16^-x+5 | | 5(x-7)=3-7x | | (x+28)+(3x)=180 | | (15/40)=(x/380) | | 15/40=x/380 | | 15=3a=6 | | 5(x+7)=3-7x | | 56+x=28 | | 14x-18=36-11x | | 2(1.2x+4)=4(0.6x+1)1 | | 3a+7=7a−3 | | Y+10=2(x+10) | | 6(x+3)+5=-1 | | 3c+1=6 | | 9=m+49 | | (3x+45)+3x+(4x-15)=180 | | X-63=56+8x | | f+-21=-112 | | 81=c+41 | | -78=142-a | | 3/6=w/6 | | 20–8x=30–16x. | | x/120=5/160 | | 6-2(x+3)=20 | | -0.33x+3=-1 | | 1.08^x=1.8 | | 150-3x=192+15x | | 0=(2x+1)(3x-1) | | 2x-30=x+2 | | s+9=-24 | | 55x+3=35 |

Equations solver categories